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Abstract

It is shown that for the general case of a system of non-linear equations, describing multicomponent isothermal flow in a porous
medium with phase transitions, as in hyperbolic systems, weak concentration discontinuities propagate with finite velocities, which
are determined by solving an eigenvalue problem. If the seeping phases are incompressible and there are no phase transitions, the
results obtained for weak discontinuities transfer into the well-known formulae for the Buckley – Leverett model. The results are
demonstrated for the case of two-component seepage with phase transitions.
© 2007 Elsevier Ltd. All rights reserved.

Multicomponent and multiphase isothermal flow in a porous medium with intensive interphase mass exchange
is described by a system of non-linear partial differential equations, to solve which the presence of concentration
distributions is characteristic.1–6 This system of equations can be simplified in the following two cases: 1) if the phases
are incompressible, there are no phase transitions and the capillary pressure jump can be neglected (the flow is described
by the Buckley – Leverett model, the properties of which are well-known), and 2) if the phases are incompressible,
a phase transition occurs and Amagat’s law is satisfied (the volume of the mixture does not change when a phase
transition occurs).

However, Amagat’s law and the Buckley – Leverett model are far from always applicable. For example, when
modelling gassed oil the evolved gas cannot be assumed to be incompressible. Also, if no special relation between
the density of the mixture and the composition and pressure is assumed, the system of equations cannot be reduced to
classical equations (hyperbolic, parabolic, etc.).

1. Multicomponent flow

We will consider a model of the seepage of an M-phase N-component mixture, which is widely used for solving
problems of predicting the development of oil-gas-containing strata.1–6 For low seepage rates, local thermodynamic
equilibrium can be established by fairly intensive mass transfer in each elementary volume. Of course, by fixing the
temperature T, and the total concentration ci of each i-th component of the mixture one can establish a number of
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phases in which the mixture becomes stratified, their molar concentrations in each phase ci�, the molar densities n� and
the volume saturation s�; here and henceforth the subscript i denotes the number of the component, while the subscript
� is the number of the phase. The seepage rate of each phase is given by Darcy’s law

(1.1)

where K is the absolute permeability, �� is the viscosity and k�(s�) is the relative permeability. Capillary effects are
only taken into account by introducing relative permeabilities, ignoring effects related to the presence of the interphase
boundary (adsorption) and its curvature (the shift in pressure and phase equilibrium due to capillarity).

The total seepage rate is defined as

where B is the total mobility; the quantity �� = k�/(B��) is the fraction of the �-th phase in the flow: W� = ��W.
Since the number of moles of each component is conserved, for each of them we can write the transport equation

(1.2)

where m is the porosity of the layer, ni is the molar density of the i-th component (the number of moles of the i-th
component per unit volume of the porous space) and Qi is the density of the molar flow of the i-th component. The
quantities ni and Qi characterize the mixture as a whole and are expressed in terms of the phase characteristics as
follows:

(1.3)

where n� is the molar density of the �-th phase and ci� is the molar concentration of the i-th component in the �-th
phase, which is defined in terms of Ni� – the number of moles of the i-th component in the �-th phase:

Substituting expressions (1.1) and (1.3) into Eq. (1.2) we obtain non-linear equations for the flow of a multicomponent
mixture

(1.4)

These equations must be supplemented by the phase-equilibrium relations (the equality of the chemical potentials
and pressures in the phases)

Moreover, it follows from the definitions of the phase saturation and molar concentration of the i-th component in
the �-th phase that

Note that in system (1.4), which describes N-component flow, there are N equations and N independent variables
(the pressure p and N − 1 concentrations c1, c2, . . . , cN−1).
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2. The propagation of weak discontinuities

The system of Eq. (1.2) allows of discontinuous solutions. The Hugoniot relations at a discontinuity are written in
the standard form

(2.1)

where U is the velocity of the discontinuity.
We will investigate the behaviour of weak concentration discontinuities in the general case (without assuming any

dependence of the mixture density on the composition and pressure). Suppose on a certain line x = x(t) the concentrations
undergo a weak discontinuity, i.e. along this line the quantities ci and, respectively, Qi and ni are continuous, and their
derivatives undergo a discontinuity. Differentiating the continuous functions ck(t, x) along the lines x = x(t), we obtain

(2.2)

Note that, since the quantities ni, Qi, k� and �� are continuous, we obtain from relations (2.1) and (1.1) that the pressure
has no weak discontinuity:

Then, by relation (1.1), the phase flow rates are also continuous. Summing Eq. (1.2) over i, we obtain

(2.3)

where n =
∑

i

ni is the total density of the mixture and Q =
∑

i

Qi =
∑

�

n�W� is the total flow of the mixture.

We will use the relations

(2.4)

Here �i is the fraction of the i-th component in the flow, where W* is the effective flow rate of the mixture. We express
∂Q/∂x from Eq. (2.3) and substitute it into Eq. (1.2). We then take into account the fact that n = n(p, c1, . . . , cN−1).
We obtain

(2.5)

Subtracting one of the expressions of (2.5), written on different sides of the line x = x(t), from the other and taking
the continuity of the function W* into account, we have

(2.6)

where

(2.7)

Combining relations (2.6) and (2.2), we conclude that the quantities [∂ck/∂x] and the velocities of weak discontinuities
ẋ are connected by the relations

(2.8)

Hence, the velocities of weak discontinuities are determined in the form ẋ = W∗�, where � are the eigenvalues of
the problem
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where A and B are matrices with elements (2.7). Here the quantities [∂ck/∂x] are proportional to the components of the
corresponding right eigenvectors.

It follows from the normalization condition

that the functions �i = �i(c1, c2, . . .), defined by formula (2.4), can be converted to homogeneous functions of zero

degree in the variable ci, by making the replacement ci = ci

(∑
k

ck

)−1

. It then follows from Euler’s theorem on

homogeneous functions that

(2.9)

One of the solutions of the eigenvalue problem (2.8) has the form

(2.10)

It is obvious that this solution has no physical meaning since ck ≥ 0. On the other hand, when ẋ �= 0, summing the
quantities (2.7) over i taking into account (2.10) and the first equation of (2.4), we obtain

The additional relation obtained denotes that, for the equations of the flow of an N-component mixture, there are
no more than N − 1 non-zero propagation velocities of weak concentration discontinuities. Hence, it follows from the
non-linear equations of multicomponent flow that weak concentration discontinuities propagate with finite velocities,
which are given by formula (2.7), and there are no more than N − 1. It remains to emphasize that weak discontinuities
propagate along certain curves which, however, cannot be called characteristics. In classical hyperbolic systems, not
only weak discontinuities propagate along characteristics, but certain characteristic relations are also satisfied.

3. Two-component flow

We will illustrate the results obtained above using the example of the simple but important practical case of a
two-component mixture.

We will denote the concentration of the more volatile (second) component by c2 = c, in which case the concentration
of the first component will be c1 = 1 − c. The two-component mixture can exist in a single-phase or two-phase state.
The more dense phase will be assumed to be a liquid and we will denote the quantities corresponding to it by the
subscript l, and the components of the less-dense phase (gaseous) will be denoted by the subscript g. We will denote
the volume saturation of the gas phase by sg = s, and that of the liquid phase by sl = 1 − s. The fraction of the gas phase
(the Buckley – Leverett function) and of the liquid phase in the flow

The fraction of the first and second components in the flow
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Fig. 1.

In this notation, the equations of two-component flow take the form

(3.1)

Here ng = ng(p, c), nl = nl(p, c) are the molar densities of the gas and liquid phases, and cg = cg(p, c), cl = cl(p, c) are
the molar concentrations of the gas and liquid phases.

Since, there is no more than one propagation velocity of weak discontinuities for a two-component mixture (as was
shown above), to calculate the physically admissible velocity it is sufficient to consider one of the equations of system
(2.8) (for example, the second):

Hence, we obtain for the velocity of the weak discontinuity

(3.2)

A graph of the function �(c) for a fixed pressure is shown in the lower part of Fig. 1. In the upper part we show a typical
phase diagram of the binary mixture. The heavy curves represent the limits of the two-phase region (the boiling and
condensation curves – the phase-equilibrium curves), which specify the equilibrium concentrations in the liquid and
gaseous phases as a function of the pressure; the thin curves represent the boundaries of connectedness (mobility) of
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the phases, due to the residual saturation. In the region of single-phase flow (when 0 ≤ c ≤ cl or cg ≤ c ≤ 1) we have
�(c) = c. In the two-phase region, when one of the phases is not connected, i.e. when cl ≤ c ≤ c* or c** ≤ c ≤ cg, we
have � = const. In the two-phase region, where both phases are mobile (i.e. when c* ≤ c ≤ �**) the function �(c) has a
characteristic S-shaped form.

For the case of incompressible phases, formulae (3.2) are simplified. In the region of single-phase flow we have

In the region of two-phase flow (L + G), if the phases are incompressible and there are no phase transitions, we
obtain the well known relation defining the propagation velocity of weak discontinuities in the Buckley – Leverett
model.
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